

# RD485NE 产品说明书

# **RFDot © 2011.11 Version 1.1**



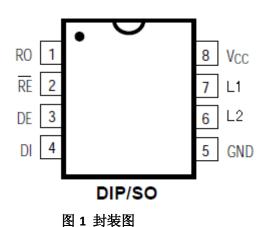
RFDot 产品,RoHS 认证,绿色无铅封装

封装类型: DIP/SO

**RoHS** 

#### 产品概述

RD485NE 是一款应用于 RS-485 和RS-422 通信系统的收发芯片,传输和接收的数据传输率可高达 2.5Mbps。485 为半双工型,485 有驱动使能 (DE) 和接收使能 (RE)管脚,当关闭时,驱动和接收输出为高阻。相比传统 485 芯片,RD485NE 可以实现 A,B 反接通讯(总线 A、B 不分),同时,通讯速率必须大于 25Hz。


#### 产品应用

低功耗 RS-485 收发器 低功耗 RS-422 收发器 电平转换 防电磁干扰(EMI)的收发器 工控局域网

#### 产品特点

- ◆ 静电保护(ESD): ±15kV-人体模式 (HBM)
- ◆ 三态输出
- ◆ 半双工
- ◆ 总线允许多达 256 个收发器
- ◆ 可实现 A,B 反接通讯
- ◆ 完全兼容与其他 485 芯片

#### 芯片封装



#### 引脚功能描述

| 引脚 | 名字       | 功能                                    |
|----|----------|---------------------------------------|
| 1  | RO       | 接收输出端。                                |
| 2  | RE       | 接收使能端: 低电平有效,RE 为高时,接收输出为高阻           |
| 3  | DE       | 发送使能端:高电平有效,DE 为低时,发送输出为高阻。 DE 为高电平时  |
|    |          | 芯片工作在发送状态,DE 为低电平且 RE 为低电平时芯片工作在接收状态。 |
| 4  | DI       | 发送数据输入端。                              |
| 5  | GND      | 地,电源负端                                |
| 6  | L2       | 接收输入端也即发送输出端                          |
| 7  | L1       | 接收输入端也即发送输出端                          |
| 8  | $V_{CC}$ | 电源正端                                  |



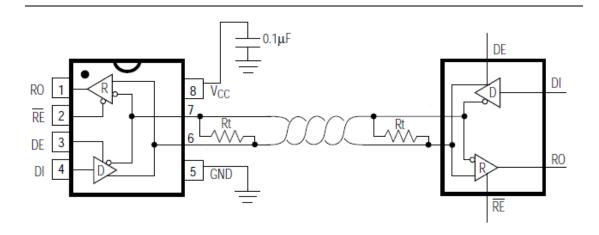



图 2 产品应用示意图(总线上6 脚和7 脚不分)

#### 产品绝对最大额定值

| 供电电压(V <sub>cc</sub> )          | +7V         |
|---------------------------------|-------------|
| 控制输入电压(RE, DE)                  | -0.5V 至 +7V |
| 驱动输入电压(DI)                      | -0.5V 至 +7V |
| 驱动输出电压(A, B)                    | -0.5V 至 +7\ |
| 接收输入电压(A, B)                    | -0.5V 至 +7\ |
| 接收输出电压(RO)                      | -0.5V 至 +7V |
| 连续功率谱(TA = +70°C)               |             |
| 8 脚塑封 DIP (+70°C 以上 -9.08mW/°C) | 725mW       |
| 8 脚 SO (+70°C以上 -5.85mW/°C)     | 470mW       |
| 存贮温度范围65°                       | C至+160°C    |
| 工作温度范围40                        | °C至+85°C    |
| 焊锡温度(10 秒)                      | +300° (     |

最大允许额定值是指超过这些值可能会使器件发生不可恢复的损坏。在这些条件之下是 不利于器件正常运作的,器件连续工作在最大允许额定值下可能影响器件可靠性, 所有的 电压的参考点为地。



### 产品直流电学特性

#### (如无特别说明 Vdd=5V±5%,Ta= T<sub>MIN</sub> to T<sub>MAX</sub>)(注 **1,2**)

| PARAMETER                                   | SYMBO            | BO CONDITIONS |                   | MIN  | TYP | MAX | UNIT |
|---------------------------------------------|------------------|---------------|-------------------|------|-----|-----|------|
|                                             | L                |               |                   |      |     |     | S    |
| 驱动差分输出(无负载)                                 | V <sub>OD1</sub> |               |                   |      |     | 5   | V    |
| 驱动差分输出(带负载)                                 | $V_{OD2}$        | R=50Ω,图 3     |                   | 2    | 3   |     | V    |
| 互补输出状态驱动差分输出                                | $\Delta V_{OD}$  |               |                   |      |     | 0.2 | V    |
| 电压的变化幅度                                     |                  |               |                   |      |     |     |      |
| 驱动共模输出电压                                    | V <sub>oc</sub>  |               |                   |      |     | 3   | V    |
| 互补输出状态驱动共模输                                 | $\Delta V_{OC}$  |               |                   |      |     | 0.2 | V    |
| 出电压的变化幅度                                    |                  |               |                   |      |     |     |      |
| 输入高电压                                       | V <sub>IH</sub>  | DE ,RE,DI     |                   | 2    |     |     | V    |
| 输入低电压                                       | V <sub>IL</sub>  | DE ,RE,DI     |                   |      |     | 0.8 | V    |
| 输入电流                                        | I <sub>IN1</sub> | DE ,RE, DI    |                   |      |     | ±2  | uA   |
| 输入电流(A, B)                                  | I <sub>IN2</sub> | DE = 0V;      | V <sub>IN</sub> = |      | 40  | 90  | uA   |
|                                             |                  | VCC = 5V      | 5V                |      |     |     |      |
|                                             |                  |               | V <sub>IN</sub> = |      | 60  | 100 |      |
|                                             |                  |               | 0                 |      |     |     |      |
| 接收差分阈值电压                                    | V <sub>TH</sub>  |               | l                 | -0.1 |     | 0.1 | V    |
| 接收输入滞后                                      | $\Delta V_{TH}$  |               |                   |      | 50  |     | mV   |
| 接收输出高电压                                     | V <sub>OH</sub>  | IO = -4mA,    |                   | 4.2  |     | 4.8 | V    |
| 接收输出低电压                                     | V <sub>OL</sub>  | IO = 4mA,     |                   |      | 0.1 | 0.2 | ٧    |
| 接收三态(高阻)输出电流                                | I <sub>OZR</sub> | 0.4V ≤ VO ≤   |                   |      |     | ±1  | uA   |
|                                             |                  | 2.4V          |                   |      |     |     |      |
| 接收输入阻抗                                      | R <sub>IN</sub>  |               |                   |      | 100 |     | ΚΩ   |
| 无负载供电电流                                     | I <sub>cc</sub>  | RE、DE、DI=0 or |                   |      | 0.5 | 1.0 | mA   |
|                                             |                  | $V_{CC}$      |                   |      |     |     |      |
| 驱动输出电流                                      | I <sub>0</sub>   | DE=RE=5V      | DI-0              | 60   |     |     | mA   |
| 2020年11日中12月                                | 10               | Or Vcc        | DI-0              |      |     |     | IIIA |
| 接收输出电流                                      | I <sub>OSR</sub> | 0V ≤ VO ≤     | VCC               |      | 25  |     | mA   |
| 1X   X 101 E1   E1   E1   E1   E1   E1   E1 | 105K             |               | • • • •           |      |     |     |      |
| ESD 保护                                      | L1 and           |               |                   |      | ±   |     | kV   |
|                                             | L2               |               |                   |      | 15  |     |      |
|                                             | pins,            |               |                   |      |     |     |      |
|                                             | tested           |               |                   |      |     |     |      |
|                                             | using            |               |                   |      |     |     |      |
|                                             | Human            |               |                   |      |     |     |      |
|                                             | Body             |               |                   |      |     |     |      |
|                                             | Model            |               |                   |      |     |     |      |
|                                             |                  | 1             |                   |      |     |     |      |



### <u>开关特性</u>

(如无特别说明 Vdd=5V±5%,Ta= T<sub>MIN</sub> to T<sub>MAX</sub>)(注 1,2)

| PARAMETER   | SYMBOL            | CONDITIONS         | MIN | TYP | MAX | UNITS |
|-------------|-------------------|--------------------|-----|-----|-----|-------|
| 工作电压范围      | Vdd               |                    | 4.5 | 5.0 | 5.5 | V     |
| 驱动输入到输出     | t <sub>PLH</sub>  | Rdiff=50 $\Omega$  | 10  | 35  | 70  | ns    |
|             | t <sub>PHL</sub>  | CL1=Cl2=100pF      | 10  | 50  | 90  | ns    |
| 驱动输出压摆到     | t <sub>SKEW</sub> | 图 5,图 8            |     | 30  |     | ns    |
| 输出          |                   |                    |     |     |     |       |
| 驱动上升与下降     | t <sub>R</sub>    |                    |     | 40  | 70  | ns    |
| 时间          | t <sub>F</sub>    |                    |     | 40  | 70  | ns    |
| 驱动开启到输出     | t <sub>zH</sub>   | CL=100pF 图 6,图 10, |     | 30  | 70  | ns    |
| 为高          |                   | S2 关闭              |     |     |     |       |
| 驱动开启到输出     | t <sub>ZL</sub>   | CL=100pF 图 6,图 10, |     | 30  | 70  | ns    |
| 为低          |                   | S1 关闭              |     |     |     |       |
| 驱动从低到关闭     | t <sub>LZ</sub>   | CL=100pF 图 6,图     |     | 100 | 120 | ns    |
|             |                   | 10, S1 关闭          |     |     |     |       |
| 驱动从高到关闭     | t <sub>HZ</sub>   | CL=100pF 图 6,图     |     | 90  | 110 | ns    |
|             |                   | 10, S2 关闭          |     |     |     |       |
| 接收输入到输出     | t <sub>PLH</sub>  | Rdiff=50 $\Omega$  | 20  | 60  | 200 | ns    |
|             | t <sub>PHL</sub>  | CL1=Cl2=100pF      | 20  | 40  | 200 | ns    |
| tPLH - tPHL | t <sub>SKD</sub>  | 图 5,图 9            |     | 20  |     | ns    |
| 差分接收压摆      |                   |                    |     |     |     |       |
| 接收开启到输出     | t <sub>ZL</sub>   | CL=15pF 图 4,图 11,  |     | 50  | 80  | ns    |
| 为低          |                   | S2 关闭              |     |     |     |       |
| 接收开启到输出     | t <sub>zH</sub>   | CL=15pF 图 4,图 11,  |     | 60  | 90  | ns    |
| 为高          |                   | S1 关闭              |     |     |     |       |
| 接收从低到关闭     | t <sub>LZ</sub>   | CL=15pF 图 4,图      |     | 50  | 80  | ns    |
|             |                   | 11,S2 关闭           |     |     |     |       |
| 接收从高到关闭     | t <sub>HZ</sub>   | CL=15pF 图 4,图      |     | 60  | 90  | ns    |
|             |                   | 11,S1 关闭           |     |     |     |       |
| 数据率         | f <sub>MAX</sub>  |                    | 2.5 |     |     | Mbps  |

#### 无极特性

驱动极性开关和接受极性开关的极性方向保持一致,在如下情况 DE=RE=0V,并且 RO 为低,持续 Ts 时间后,极性方向改变。

| PARAMETER | SYMBOL | CONDITIONS    | MIN | TYP | MAX | UNITS |
|-----------|--------|---------------|-----|-----|-----|-------|
| 无极开关翻转等   | Ts     | DE=RE=0,RO 为低 | 250 | 320 | 400 | ms    |
| 待时间       |        |               |     |     |     |       |



注 1: 所有典型情况指 vdd=5V, Ta=25℃;

注 2: 所有输入到管脚的电流为正,所有从管脚输出的电流为负;如无特别指出,则电压指对地电压;

#### 产品测试电路

RD485NE 无 A、B 极性之分,下图中 A、B 和 Y、Z 只是为了图示方便区分两条通信总线。

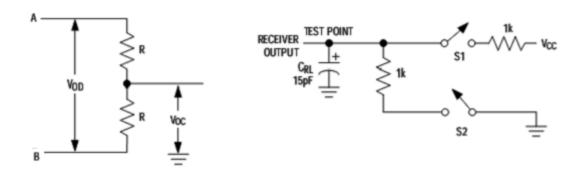



图 3 直流驱动测试电路

图 4 接收时间测试电路

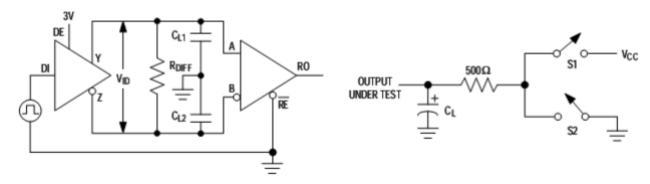



图 5 驱动/接收时间测试电路

图 6 驱动时间测试电路

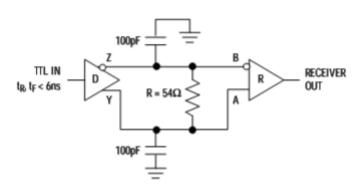



图 7 接收传输延时测试电路



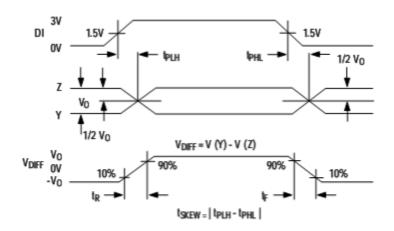



图 8 驱动传输延时

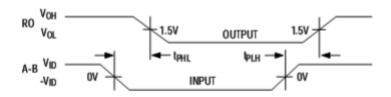



图 9 接收传输延时

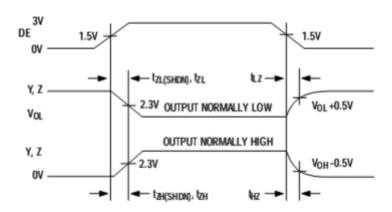



图 10 驱动开启和关闭时间



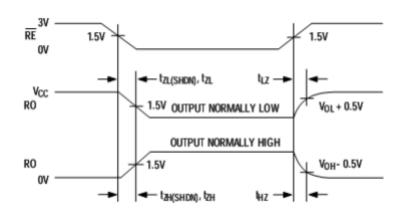



图 11 接收开启和关闭时间

#### 产品应用

1、RS-485 是一种国际通用串口通信标准,RS-485 总线通信模式由于具有结构简单、价格低廉、通信距离和数据传输速率适当等特点,被广泛应用于仪器仪表、智能化传感器集散控制、楼字控制、监控报警等领域。

但 RS-485 芯片通信引脚有 AB 极性之分,通信模式要求必须 A-A、B-B 连接,否则系统将无法正常工作,这在实际使用中带给现场通信线的施工与维护诸多麻烦。

我国智能化电网建设需要大量的 485 接口电表,采用常规的 485 芯片存在着通信线极性的识别问题,一般 485 电表的现场施工 20-30%的问题是 485 通信线的极性问题引起的。

- 2、RD485NE 是一种最新技术生产的通信引脚没有极性的 485 芯片,无论引脚和功能完全兼容现有 RS-485 芯片。采用 RD485NE 芯片通信的仪表、设备,通信线路的现场施工将没有极性识别问题、不需多色线,将使现场施工与维护方便、廉价、高效和高质,将是 RS-485 芯片的升级换代产品。
- 3、用 RD485NE 在电表方案上实现无极性通讯必须注意两点: (1) 总线上必须要一对上下拉电阻(建议阻值 1K,用在采集器上),而且每个单独电表的 485 通讯口不能加上下拉电阻; (2)通讯速率必须大于 25Hz,并且通讯的高电平或低电平持续时间必须小于 100mS。
- 4、RD485NE 完全可替代普通极性 485 方案。

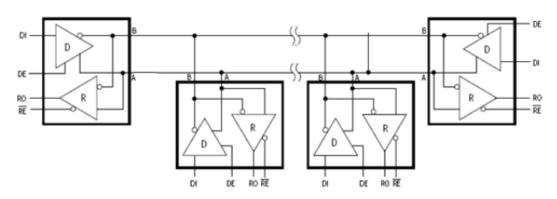



图 12 典型半双工 RS-485 网络



## For free samples & the latest literature: http://www.rfdot.cn, or phone 0510-85181593-606

- ◆ 本资料内容,随产品的改进,可能会有未经预告之更改。
- ◆ 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其 责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- ◆ 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- ◆ 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- ◆ 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。